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Overview 
 
It is widely recognized in many industries that sustainability is a key driver of innovation.  Numerous 
companies, especially large ones who made sustainability as a goal, are achieving clearly more competitive 
advantages.  The metal finishing industry, however, is clearly behind others in response to the challenging 
needs for sustainable development.   
 
This research project aims to: 

1. Create a metal-finishing-specific sustainability metrics system, which will contain sets of indicators 
for measuring economic, environmental and social sustainability, 

2. Develop a general and effective method for systematic sustainability assessment of any metal 
finishing facility that could have multiple production lines, and for estimating the capacities of 
technologies for sustainability performance improvement, 

3. Develop a sustainability-oriented strategy analysis method that can be used to analyze sustainability 
assessment results, identify and rank weaknesses in the economic, environmental, and social 
categories, and then evaluate technical options for performance improvement and profitability 
assurance in plants, and 

4. Introduce the sustainability metrics system and methods for sustainability assessment and strategic 
analysis to the industry. 

This will help metal finishing facilities to conduct a self-managed sustainability assessment as well as 
identify technical solutions for sustainability performance improvement. 
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Progress Report (Quarter 15) 
 
1. Student participation 
 
Mahboubeh Moghadasi, a PhD student in the PI’s group, conducted research in this reporting period.  She 
is financially supported by the University as a Graduate Teaching Assistant (GTA) due to a need for course 
assistance for the academic year of 2023-24.  She has continuously worked on this AESF research project 
under the PI’s supervision. 
 
2. Summary of project activities 
 
In this quarter, our work has focused on the development of a set of Digital Twins (DTs) using the Physics-
Informed Neural Network (PINN) technology with application on parts rinsing simulation. 
 
2.1. Integrated rinsing model development 
 
An electroplating line usually has several rinsing systems, each of which may contain one or more rinsing 
units.  The dirt and/or chemical residues on the parts surface are rinsed off in the rinse systems.  Each 
rinse unit has two operating modes: the rinse mode and the idle mode.  To characterize the rinse operation, 
we need to have two types of dynamic models. 
 
(2.1.1) Fundamental model for characterizing the removal of the dirt/chemical residues on a part surface: 
 

 𝐴𝑝
𝑑𝑊𝑃𝑟(𝑡)

𝑑𝑡
= −𝑟𝑃𝑟(𝑡)       (1) 

 

 𝑟𝑃𝑟(𝑡) = 𝑘𝑟𝑟𝑐(𝑡𝑐
𝑒)(𝜃𝑊𝑃𝑟(𝑡) − 𝑥𝑟(𝑡))     (2) 

 
where 𝑊P𝑟 is the amount of dirt on parts when the barrel is in a rinse tank (g/cm2); 𝑟P𝑟 is the dirt 
removal rate in the rinse tank (g/min); 𝑘𝑟 is the mass transfer coefficient (gal-chem·gal-water/gal-soln 

·cm2); r𝑐 (𝑡𝑐
𝑒) is the looseness of dirt on parts when leaving a cleaning tank at the time 𝑡𝑐

𝑒 (cm2·gal-soln/gal-
chem·min); 𝜃 is the unit conversion factor (cm2/gal-water) and 𝑥𝑟 is the pollutant composition in rinse water 
(g/gal-water). 
 
(2.1.2) Fundamental model to reveal the dynamic change of the pollutants in a rinse unit. 
The amount of pollutants in the rinse water is related to the rinsing efficiency, water flow rate, the initial 
dirtiness of parts and the cleanness of the influent rinse water.  In a rinse unit, there are two operational 
modes: the rinse mode, in which the parts are submerged in the tank, and the idle mode, in which the parts 
are withdrawn while the rinse water still continuously flows through the tank.  The following model is derived 
for both the rinse and the idle modes. 
 

 𝑉𝑟
𝑑𝑥𝑟(𝑡)

𝑑𝑡
= 𝐹𝑟(𝑡)(𝑍𝑟(𝑡) − 𝑥𝑟(𝑡)) + (𝐻(𝑡) − 𝐻(𝑡 − 𝑡𝑟

𝑒))𝑟𝑃𝑟(𝑡) (3) 

 
where 𝑉𝑟 is the rinse tank capacity (gal-water); 𝐹𝑟 is the rinse water flow rate (gal-water/min) and 𝑍𝑟 is 
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the pollutant concentration in 
the influent rinse water (g/gal-
water).  The operational mode 
switch is described by a pulse 
function (see the second term 
on the right of the equation, 
which is expressed by two 
Heaviside functions appeared 
at two different time instants. 
 
2.2. Architecture of physics-
informed neural networks 
(PINN) 
 
In the last report (July-
September 2023, 14th quarter), 
we described a PINN structure 
where an integrated cleaning 
model was integrated, which is 
shown in Fig. 1.  The same 
structure is used for accommodating the integrated rinsing model described above in the Physics Layer in 
the figure. 
 
2.3. Rinse operation simulation 
 
We have conducted an extensive PINN-based 
simulation.  Table 1 shows the parameters 
used in the model as well as the operating 
condition setting used for simulation.  As the 
first step, we simulated the rinsing of one 
barrel of parts.  There were two scenarios for 
simulation study. 
 
In the first scenario, the PINN was exposed to 
a synthesized clean dataset to assure optimal conditions for model prediction and facilitate a baseline 
against which the efficacy of the model could be evaluated.  The simulation result of the first scenario for 

the amount of dirt on parts (𝑊𝑃𝑟) and pollutant concentration (𝑥𝑟) in the rinse tank (RT) are shown in 

Figures 2 and 3, respectively. 
 
In the second scenario, the model was navigated using a synthesized noisy dataset, which reflected a real 
operating condition (with disturbances and some other uncertainties appeared in production).  The 
simulation result of the second scenario for amount of dirt on parts (𝑊𝑃𝑟) and pollutant concentration (𝑥𝑟) 
in the rinsing tank (RT) are shown in Figures 4 and 5, respectively. 
 
 
 

 
Figure 1 - PINN as the last layer of a feedforward neural network (FNN). 

 

Table 1 – Operating condition setting and model parameters 
in the case study. 
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Figure 2 - Dirt/chemical removal dynamics on part 
(𝑊𝑃𝑟) in the rinse tank. 

Figure 3 - Dynamic change of pollutant concentration 
change (𝑥𝑟) in the rinse tank. 

 

  
Figure 4 - Dirt/chemical removal dynamics on part 
(𝑊𝑃𝑟) using noisy data. 

Figure 5 - Dynamic change of pollutant concentration 
change (𝑥𝑟) using noisy data. 

 
In the idle mode, owing to the inherent simplicity 
of the governing nonlinear differential equation, 
commendable prediction accuracy is attained 
even without model training.  Figure 6 shows the 
pollutant concentration dynamics in the rinse unit 
in both the rinse and the idle modes.  Given the 
elementary nature of the equation, it can be 
swiftly and effectively solved within the 
computational cell, ensuring immediate and 
reliable predictions.  This allows for efficient 
system modeling and operational planning 
even in the absence of a thoroughly trained 
model, underscoring the utility and applicability of 
the approach in scenarios dictated by simpler differential equations.  This observation further supports the 
versatility of the model, being adept not only in more computationally intensive scenarios but also in 
straightforward, analytical contexts, enhancing its practicality across a diverse array of operational 

 
Figure 6 - Pollutant concentration change (𝑥𝑟) in the rinse 
tank. 
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circumstances.  These are reflected in Table 2, which shows a comparison of the operation of the rinse unit 
using different datasets. 
 

In addition to the single-step rinse 
simulation, we also simulated two-
step rinsing using the PINN. Our 
focus was on the estimation of 
crucial parameters, such as the 
mass transfer coefficient, 𝑘𝑟.  The 
PINN framework integrates these 
parameters with an NN model, 

trained on both available data and the governing physical laws of the system.  This dual reliance on 
empirical data and theoretical principles ensures a more robust and accurate simulation.  Table 3 lists 
process and parameter settings used in the simulation study. 
 

Table 3 - Process setting and process parameters for simulating a two-step rinsing system. 

 
 

The simulation results for the two-step rinsing system using PINN indicate a high degree of accuracy in 
predicting the dynamics of dirt removal and pollutant concentration within the tanks.  The PINN based 
predictions closely follow the actual data trends.  In Fig. 7, the prediction of dirt removal over time is very 
close to the actual measurements.  Similarly, Fig. 8 captures the changes in pollutant concentration, which 
is very satisfactory.  The consistency between the predicted and the actual values validates the PINN 
approach, offering promising avenues for reducing environmental impact through improved process 
efficiency. 

  
Figure 7 - Dirt removal from parts surface in the two-
step rinsing system. 

Figure 8 - Pollutant concentration change in two rinse 
tanks. 

Table 2 - Comparison of the rinse unit operation using different datasets. 
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3. Summary and plan 
 
In the last report, we reported our success in the development of Physics-Informed Neural Networks 
(PINN’s) based digital twinning method for simulate cleaning processes.  In this quarter, we made good 
progress in using the PINN technology to simulate a rinse system consisting of one or two rinsing units.  
We are confident that this technology can eventually be used to simulate an entire electroplating plant. 
 
In the next project period, we will simulate the rinsing system operated for any period of time, such as for a 
shift, a day or multiple days.  We will also start to simulate the electroplating operation.  Hopefully, a plant-
wide Digital Twin platform using PINN will be eventually created, which should be highly valuable for 
conducting dynamic sustainability assessment and decision making for significant sustainability 
performance improvement. 
 
4. Published paper 
 
The PI and his students, Abdurrafay Siddiqui (PhD student in the PI’s group) and Rebecca Potoff (PhD 
student now at SUNY Stony Brook) has published a paper, titled “Sustainability metrics and technical 
solution derivation for performance improvement of electroplating facilities,” in Clean Technologies and 
Environmental Policy. It is accessible online (https://link.springer.com/article/10.1007/s10098-023-02696-9). 
The paper contains a complete set of sustainability metrics developed for the metal finishing industry, and 
its application for sustainability performance improvement.  In the acknowledgement section, AESF’s 
financial support through Project No. R-121 is acknowledged, together with that of the National Science 
Foundation. 
 
5. Past project reports 
 
1. Quarter 1 (April-June 2020): Summary: NASF Report in Products Finishing; NASF Surface Technology 

White Papers, 84 (12), 14 (September 2020); Full paper: http://short.pfonline.com/NASF20Sep1 
2. Quarter 2 (July-September 2020): Summary: NASF Report in Products Finishing; NASF Surface 

Technology White Papers, 85 (3), 13 (December 2020); Full paper: 
http://short.pfonline.com/NASF20Dec1 

3. Quarter 3 (October-December 2020): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 85 (7), 9 (April 2021); Full paper: http://short.pfonline.com/NASF21Apr1. 

4. Quarter 4 (January-March 2021): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 85 (11), 13 (August 2021); Full paper: 
http://short.pfonline.com/NASF21Aug1 

5. Quarter 5 (April-June 2021): Summary: NASF Report in Products Finishing; NASF Surface Technology 
White Papers, 86 (1), 19 (October 2021); Full paper: http://short.pfonline.com/NASF21Oct2 

6. Quarter 6 (July-September 2021): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 86 (4), 19 (January 2022); Full paper: 
http://short.pfonline.com/NASF22Jan3 

7. Quarter 7 (October-December 2021): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 86 (7), 17 (April 2022); Full paper: http://short.pfonline.com/NASF22Apr2 

8. Quarter 8 (January-March 2022): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 86 (10), 17 (July 2022); Full paper: http://short.pfonline.com/NASF22Jul2 

9. Quarter 9 (April-June 2022): Summary: NASF Report in Products Finishing; NASF Surface Technology 
White Papers, 87 (1), 17 (October 2022); Full paper: http://short.pfonline.com/NASF22Oct1 

http://short.pfonline.com/NASF20Sep1
http://short.pfonline.com/NASF20Dec1
http://short.pfonline.com/NASF21Apr1
http://short.pfonline.com/NASF21Aug1
http://short.pfonline.com/NASF21Oct2
http://short.pfonline.com/NASF22Jan3
http://short.pfonline.com/NASF22Apr2
http://short.pfonline.com/NASF22Jul2
http://short.pfonline.com/NASF22Oct1
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10. Quarter 10 (July-September 2022): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 87 (4), 17 (January 2023); Full paper: 
http://short.pfonline.com/NASF23Jan2 

11. Quarter 11 (October-December 2022): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 87 (6), 19 (March 2023); Full paper: http://short.pfonline.com/NASF23Mar1 

12. Quarter 12 (January-March 2023): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 87 (10), 20 (July 2023); Full paper: http://short.pfonline.com/NASF23Jul1 

13. Quarter 13 (April-June 2023): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 88 (2), 19 (November 2023); Full paper: 
http://short.pfonline.com/NASF23Nov2 

14. Quarter 14 (July-September 2023): Summary: NASF Report in Products Finishing; NASF Surface 
Technology White Papers, 88 (4), 17 (November 2023); Full paper: 
http://short.pfonline.com/NASF24Jan2 

 
6. About the principal investigator (P.I.) 
 

Dr. Yinlun Huang is a Professor at Wayne State University (Detroit, Michigan) in the 
Department of Chemical Engineering and Materials Science.  He is Director of the 
Laboratory for Multiscale Complex Systems Science and Engineering, the Chemical 
Engineering and Materials Science Graduate Programs and the Sustainable Engineering 
Graduate Certificate Program, in the College of Engineering.  He has ably mentored 
many students, both Graduate and Undergraduate, during his work at Wayne State. 
 

He holds a Bachelor of Science degree (1982) from Zhejiang University (Hangzhou, Zhejiang Province, 
China), and M.S. (1988) and Ph.D. (1992) degrees from Kansas State University (Manhattan, Kansas).  He 
then joined the University of Texas at Austin as a postdoctoral research fellow (1992).  In 1993, he joined 
Wayne State University as Assistant Professor, eventually becoming Full Professor from 2002 to the 
present.  He has authored or co-authored over 220 publications since 1988, a number of which have been 
the recipient of awards over the years. 
 
His research interests include multiscale complex systems; sustainability science; integrated material, 
product and process design and manufacturing; computational multifunctional nano-material development 
and manufacturing; and multiscale information processing and computational methods. 
 
He has served in many editorial capacities on various journals, as Co-Editor of the ASTM Journal of Smart 
and Sustainable Manufacturing Systems, Associate Editor of Frontiers in Chemical Engineering, Guest 
Editor or member of the Editorial Board, including the ACS Sustainable Chemistry and Engineering, 
Chinese Journal of Chemical Engineering, the Journal of Clean Technologies and Environmental Policy, 
the Journal of Nano Energy and Power Research.  In particular, he was a member of the Editorial Board of 
the AESF-published Journal of Applied Surface Finishing during the years of its publication (2006-2008). 
 
He has served the AESF and NASF in many capacities, including the AESF Board of Directors during the 
transition period from the AESF to the NASF.  He served as Board of Directors liaison to the AESF 
Research Board and was a member of the AESF Research and Publications Boards, as well as the 
Pollution Prevention Committee.  With the NASF, he served as a member of the Board of Trustees of the 
AESF Foundation.  He has also been active in the American Chemical Society (ACS) and the American 
Institute of Chemical Engineers (AIChE). 
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He was the 2013 Recipient of the NASF William Blum Scientific Achievement Award and delivered the 
William Blum Memorial Lecture at SUR/FIN 2014 in Cleveland, Ohio.  He was elected AIChE Fellow in 
2014 and NASF Fellow in 2017.  He was a Fulbright Scholar in 2008 and has been a Visiting Professor at 
many institutions, including the Technical University of Berlin and Tsinghua University in China.  His many 
other awards include the AIChE Research Excellence in Sustainable Engineering Award (2010), AIChE 
Sustainable Engineering Education Award (2016), the Michigan Green Chemistry Governor’s Award (2009) 
and several awards for teaching and graduate mentoring from Wayne State University, and Wayne State 
University’s Charles H. Gershenson Distinguished Faculty Fellow Award. 


